Skip to main content

Subscribe

Subscribe to our mailing list

* indicates required

Popular posts from this blog

LMAO Revenge

Continuing the tradition of past years, our seniors at the Indian IMO camp(an unofficial one happened this year) once again conducted LMAO, essentially ELMO but Indian. Sadly, only those who were in the unofficial IMOTC conducted by Pranav, Atul, Sunaina, Gunjan and others could participate in that. We all were super excited for the problems but I ended up not really trying the problems because of school things and stuff yet I solved problem 1 or so did I think. Problem 1:  There is a   grid of real numbers. In a move, you can pick any real number  ,  and any row or column and replace every entry   in it with  .  Is it possible to reach any grid from any other by a finite sequence of such moves? It turned out that I fakesolved and oh my god I was so disgusted, no way this proof could be false and then when I was asked Atul, it turns out that even my answer was wrong and he didn't even read the proof, this made me even more angry and guess wha...

Functional Equations 101

Let's get to the math:  Let there be two sets X and Y. A function  from X to Y denoted as f:XY is assigning a value in Y for every element in X. We say that X is the domain of the function f and Y is the range.  A function f:Xy is said to be injective if f(x)=f(x)x=x To put it in a more abstract way, if there is some aY then there is at most one bX such that f(b)=a holds true.  A function is said to be surjective when for any aY there is at least one bX such that f(b)=a holds true.  A function is bijective if for every aY there is exactly one bX such that f(b)=x. Bijective functions are basically functions which are both injective and surjective.  Bonus: A function f:XX is known as an involution if f(f(x))=xxX  As an exercise, the readers should try to prove that every function th...

The importance of "intuition" in geometry

Hii everyone! Today I will be discussing a few geometry problems in which once you "guess" or "claim" the important things, then the problem can easily be finished using not-so-fancy techniques (e.g. angle chasing, power-of-point etc. Sometimes you would want to use inversion or projective geometry but once you have figured out that some particular synthetic property should hold, the finish shouldn't be that non trivial) This post stresses more about intuition rather than being rigorous. When I did these problems myself, I used freehand diagrams (not geogebra or ruler/compass) because I feel that gives a lot more freedom to you. By freedom, I mean, the power to guess. To elaborate on this - Suppose you drew a perfect  diagram on paper using ruler and compass, then you would be too rigid on what is true in the diagram which you drew. But sometimes that might just be a coincidence. e.g. Let's say a question says D is a random point on segment BC, so maybe ...